RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • A Study on Thermally Bonded Geotextile Separator and Properties of Waste Landfill Application of PVA Geotextile/HDPE Geomembrane Composites

        Min, Kyung-Ho,Seo, Jung-Min,Hwang, Beong-Bok,Lee, In-Chul,Ruchiranga, Jayasekara Vishara,Jeon, Han-Yong,Jang, Dong-Hwan,Lim, Joong-Yeon The Korean Society for Composite Materials 2008 Advanced composite materials Vol.17 No.3

        This paper is concerned with geotextiles bonded chemically with geogrid to form a geocomposite. Geotextiles, thermally bonded and non-woven, play an important role as a separator. Also, this study investigates the resistance to the application environment of geotextile composites. Here, numerous tests have been performed and it was revealed from experimental results that thermally bonded geotextile in geosynthetic composites showed superior characteristics to that manufactured from needle punched non-woven method in terms of tensile strength, tensile strain and high separation performance. It was noted from experiments that the geotextile prepared for separation purpose and manufactured in a thermal bonding method showed relatively low permittivity so that it could be used as a smooth separator. In addition, PVA geotextile/HDPE geomembrane composites were designed and manufactured to investigate the waste landfill related properties. Numerous experiments have been performed and experimental results were summarized to evaluate practical applicability of PVA geotextile/HDPE geomembrane composites. Among the properties of proposed geomembrane composites, evaluation has been focused on the investigation of mechanical properties, AOS (apparent opening size), permittivity and ultraviolet stability.

      • Experimental Assessment of Mechanical Properties of Geo-grid Reinforced Material and Long-Term Performance of GT/HDPE Composite

        Seo, Jung-Min,Min, Kyung-Ho,Hwang, Beong-Bok,Lee, In-Chul,Ruchiranga, Jayasekara Vishara,Jeon, Han-Yong,Jang, Dong-Hwan,Lim, Joong-Yeon The Korean Society for Composite Materials 2008 Advanced composite materials Vol.17 No.3

        This paper is concerned with the long-term performance of geo-textile (GT) composites in terms of creep deformation and frictional properties. Composites of PVA GT and HDPE GM were made to investigate the advanced properties of long-term performance related to waste landfill applications. The same experiments were also performed for typical polypropylene and polyester GT and compared to PVA GT/HDPE GM composites. We also develop high performance GT composites with GM by using PVA GT, which is capable of improving the frictional properties and thus enhances long-term performance of GT composites. Experimental study reveals that the friction coefficient of GT composites is relatively large compared with those of polyester and polypropylene non-woven GT as long as the friction media has similar size to the particles of domestic standard earth. In addition, the geo-composites bonded with geo-grid by a chemical process were investigated experimentally in terms of strain evaluation and creep response values. Geo-grid plays an important role as a reinforcing material. Three kinds of geo-grid were prepared as strong yarn polyester and they were woven type, non-woven type, and wrap knitted type. The sample geo-grids were then coated with PVC. The rib tensile strength tests were conducted to evaluate geo-grid products in terms of tensile strength with regard to single rib. The test was performed according to GRI-GGI. It was concluded again from the experiments that the tensile and creep strains of the geo-grid showed such stable values that the geo-grid prepared in this study could protect geo-textile partially in practical structures.

      • Microscopic Evaluation and Analysis on the Tensile Strength of Hybridized Reinforcement Filament Yarns by the Commingling Process

        Herath, Chathura Nalendra,Kang, Bok-Choon,Hwang, Beong-Bok,Min, Kyung-Ho,Seo, Jung-Min,Lee, In-Chul,Ruchiranga, Jayasekara Vishara,Lim, Joong-Yeon The Korean Society for Composite Materials 2008 Advanced composite materials Vol.17 No.3

        The analysis in this paper is focused on the pattern of mixing of filaments over a cross-section of hybrid yarns according to different combinations of reinforcement and matrix filament yarns through microscopic view. The volume content of filament in hybrid yarn cross-section was maintained at 50% for both reinforcement and matrix, and the hybrid yarns count at 600 tex throughout the experiments. It was observed from the experiments that diameters of reinforcement and matrix filaments have strong effects particularly on the pattern of mixing of filaments over a cross-section of hybrid yarns such that the hybrid yarns with more or less equal diameters of reinforcement and matrix filaments showed considerably even distributions over the hybrid yarn cross-section. This paper also investigates the possibility of hybridizing carbon/aramid, carbon/glass and aramid/glass matrices through the commingling process. In the experiment, several process parameters were selected and they include pressure, yarn oversupply-rate and different nozzle types. As a result of these experiments, it was concluded that the hybridized materials show better performance than individual reinforced filament yarns in terms of mechanical properties. For small tensile forces, the carbon/glass/matrix combination turned out to be good enough for general purpose applications.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼