RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSKCI등재

        Nanostructured Bulk Ceramics (Part I)

        Han, Young-Hwan,Mukherjee, Amiya K. The Korean Ceramic Society 2009 한국세라믹학회지 Vol.46 No.3

        The processing and characterization of ceramic nanocomposites, which produce bulk nanostructures with attractive mechanical properties, have been emphasized and introduced at Prof. Mukherjee's Lab at UC Davis. The following subjects will be introduced in detail in Part II, III, and IV. In Part II, the paper will describe a three-phase alumina-based nanoceramic composite demonstrating superplasticity at a surprisingly lower temperature and higher strain rate. The next part will show that an alumina-carbon nanotube-niobium nanocomposite produced fracture toughness values that are three times higher than that of pure nanocrystalline alumina. It was possible to take advantage of both fiber-toughening and ductile-metal toughening in this investigation. In the fourth section, discussed will be a silicon-nitride/silicon-carbide nanocomposite, produced by pyrolysis of liquid polymer precursors, demonstrating one of the lowest creep rates reported so far in ceramics at the comparable temperature of $1400^{\circ}C$. This was first achieved by avoiding the oxynitride glass phase at the intergrain boundaries. One important factor in the processing of these nanocomposites was the use of the electrical field assisted sintering method. This allowed the sintering to be completed at significantly lower temperatures and during much shorter times. These improvements in mechanical properties will be discussed in the context of the results from the microstructural investigations.

      • KCI등재

        Nanostructured Bulk Ceramics (Part Ⅰ)

        한영환,Amiya K. Mukherjee 한국세라믹학회 2009 한국세라믹학회지 Vol.46 No.3

        The processing and characterization of ceramic nanocomposites, which produce bulk nanostructures with attractive mechanical properties, have been emphasized and introduced at Prof. Mukherjee’s Lab at UC Davis. The following subjects will be introduced in detail in Part ⅡI, Ⅲ, and Ⅳ. In Part Ⅱ, the paper will describe a three-phase alumina-based nanoceramic composite demonstrating superplasticity at a surprisingly lower temperature and higher strain rate. The next part will show that an alumina-carbon nanotube-niobium nanocomposite produced fracture toughness values that are three times higher than that of pure nanocrystalline alumina. It was possible to take advantage of both fiber-toughening and ductile-metal toughening in this investigation. In the fourth section, discussed will be a silicon-nitride/silicon-carbide nanocomposite, produced by pyrolysis of liquid polymer precursors, demonstrating one of the lowest creep rates reported so far in ceramics at the comparable temperature of 1400℃ This was first achieved by avoiding the oxynitride glass phase at the intergrain boundaries. One important factor in the processing of these nanocomposites was the use of the electrical field assisted sintering method. This allowed the sintering to be completed at significantly lower temperatures and during much shorter times. These improvements in mechanical properties will be discussed in the context of the results from the microstructural investigations. The processing and characterization of ceramic nanocomposites, which produce bulk nanostructures with attractive mechanical properties, have been emphasized and introduced at Prof. Mukherjee’s Lab at UC Davis. The following subjects will be introduced in detail in Part ⅡI, Ⅲ, and Ⅳ. In Part Ⅱ, the paper will describe a three-phase alumina-based nanoceramic composite demonstrating superplasticity at a surprisingly lower temperature and higher strain rate. The next part will show that an alumina-carbon nanotube-niobium nanocomposite produced fracture toughness values that are three times higher than that of pure nanocrystalline alumina. It was possible to take advantage of both fiber-toughening and ductile-metal toughening in this investigation. In the fourth section, discussed will be a silicon-nitride/silicon-carbide nanocomposite, produced by pyrolysis of liquid polymer precursors, demonstrating one of the lowest creep rates reported so far in ceramics at the comparable temperature of 1400℃ This was first achieved by avoiding the oxynitride glass phase at the intergrain boundaries. One important factor in the processing of these nanocomposites was the use of the electrical field assisted sintering method. This allowed the sintering to be completed at significantly lower temperatures and during much shorter times. These improvements in mechanical properties will be discussed in the context of the results from the microstructural investigations.

      • SCOPUSSCIE

        Quantum dot as probe for disease diagnosis and monitoring

        Mukherjee, Abhishek,Shim, Yumi,Myong Song, Joon WILEY 2016 Biotechnology Journal Vol.11 No.1

        <P><B>Abstract</B></P><P>Semiconductor quantum dots (QD) possess unique optical and electric properties like size‐tunable light emission, narrow emission range, high brightness and photostability. Recent research advances have minimized the toxicity of QDs and they are successfully used in in vitro and in vivo imaging. Encapsulation of QDs into polymeric nanoparticles and linking them with targeting ligands enabled the detection of tumors and cancer cells in vivo. QD‐antibody conjugates were successfully used in monitoring and diagnosis of HIV and myocardial infarction. Application of near infrared (NIR) QDs was found to minimize the absorption and scattering of light by native tissues thus rendering them suitable in deep tissue analysis. Aggregation and endosomal sequestration of QDs pose major challenges for the effective delivery of QDs to the cell cytosol. Toxicity minimization and effective delivery strategies may further increase their suitability for utilization in disease diagnosis. New synthesis of QDs may provide new types of bioconjugates of QDs to biomolecules, which leads to a variety of applications to many challenged research areas. QDs with narrow emission wavelength ranges are very suitable for monitoring multiple cellular targets simultaneously, and still remain the best known probes for imaging as an alternative to traditional fluorophores in disease diagnosis.</P>

      • SCIESCOPUS

        A comparative study of dragonfly inspired flapping wings actuated by single crystal piezoceramic

        Mukherjee, Sujoy,Ganguli, Ranjan Techno-Press 2012 Smart Structures and Systems, An International Jou Vol.10 No.1

        A dragonfly inspired flapping wing is investigated in this paper. The flapping wing is actuated from the root by a PZT-5H and PZN-7%PT single crystal unimorph in the piezofan configuration. The non-linear governing equations of motion of the smart flapping wing are obtained using the Hamilton's principle. These equations are then discretized using the Galerkin method and solved using the method of multiple scales. Dynamic characteristics of smart flapping wings having the same size as the actual wings of three different dragonfly species Aeshna Multicolor, Anax Parthenope Julius and Sympetrum Frequens are analyzed using numerical simulations. An unsteady aerodynamic model is used to obtain the aerodynamic forces. Finally, a comparative study of performances of three piezoelectrically actuated flapping wings is performed. The numerical results in this paper show that use of PZN-7%PT single crystal piezoceramic can lead to considerable amount of wing weight reduction and increase of lift and thrust force compared to PZT-5H material. It is also shown that dragonfly inspired smart flapping wings actuated by single crystal piezoceramic are a viable contender for insect scale flapping wing micro air vehicles.

      • SCOPUSKCI등재

        Jatropha curcas: a review on biotechnological status and challenges

        Mukherjee, Priyanka,Varshney, Alok,Johnson, T. Sudhakar,Jha, Timir Baran The Korean Society of Plant Biotechnology 2011 Plant biotechnology reports Vol.5 No.3

        Plant tissue culture and molecular biology techniques are powerful tools of biotechnology that can complement conventional breeding, expedite crop improvement and meet the demand for availability of uniform clones in large numbers. Jatropha curcas Linn., a non-edible, eco-friendly, non-toxic, biodegradable fuel-producing plant has attracted worldwide attention as an alternate sustainable energy source for the future. This review presents a consolidated account of biotechnological interventions made in J. curcas over the decades and focuses on contemporary information and trends of future research.

      • SCISCIESCOPUS

        Targeted inhibition of galectin 1 by thiodigalactoside dramatically reduces body weight gain in diet-induced obese rats

        Mukherjee, R,Kim, S W,Park, T,Choi, M S,Yun, J W Nature Publishing Group 2015 International Journal of Obesity Vol.39 No.9

        Background:Galectin 1 (GAL1), an animal lectin is well characterized in the context of cancer, tumor environment, but its physiological roles in obesity remain to be demonstrated. In this study, we investigated whether targeted inhibition of GAL1 prevents obesity based on the previous observations that GAL1 is highly expressed in adipose tissues of high-fat diet (HFD)-induced obese rats.Methods:Lipogenic capacity of Lgals1 knocked down adipocytes was evaluated by determining the expression levels of major lipogenic markers using real-time PCR and immunoblot analysis. GAL1 partner proteins were identified using co-immunoprecipitation followed by protein mass fingerprinting. Finally, inhibitory effect of GAL1 by thiodigalactoside (TDG) was assessed in adipocytes and HFD-induced obese rats.Results:Knockdown of GAL1-encoding gene (Lgals1) attenuated adipogenesis and lipogenesis in both 3T3-L1 and HIB1B adipocytes. Further, direct treatment with TDG, a potent inhibitor of GAL1, to cultured adipocytes in vitro significantly reduced fat accumulation. Our animal experiment revealed that intraperitoneal injection of TDG (5 mg kg<SUP>−1</SUP>) once per week for 5 weeks in Sprague-Dawley (SD) rats resulted in dramatic inhibition of HFD-induced body weight gain (27.3% reduction compared with HFD-fed controls) by inhibiting adipogenesis and lipogensis as well as by increasing expression of the proteins associated with thermogenesis and energy expenditure.Conclusion:GAL1 has an essential role in HFD-induced obesity development. From a clinical viewpoint, pharmaceutical targeting of GAL1 using TDG and other inhibitor compounds would be a novel therapeutic approach for the treatment of obesity.

      • KCI등재

        Plant Disease Identification using Deep Neural Networks

        Mukherjee, Subham,Kumar, Pradeep,Saini, Rajkumar,Roy, Partha Pratim,Dogra, Debi Prosad,Kim, Byung-Gyu Korea Multimedia Society 2017 The journal of multimedia information system Vol.4 No.4

        Automatic identification of disease in plants from their leaves is one of the most challenging task to researchers. Diseases among plants degrade their performance and results into a huge reduction of agricultural products. Therefore, early and accurate diagnosis of such disease is of the utmost importance. The advancement in deep Convolutional Neural Network (CNN) has change the way of processing images as compared to traditional image processing techniques. Deep learning architectures are composed of multiple processing layers that learn the representations of data with multiple levels of abstraction. Therefore, proved highly effective in comparison to many state-of-the-art works. In this paper, we present a plant disease identification methodology from their leaves using deep CNNs. For this, we have adopted GoogLeNet that is considered a powerful architecture of deep learning to identify the disease types. Transfer learning has been used to fine tune the pre-trained model. An accuracy of 85.04% has been recorded in the identification of four disease class in Apple plant leaves. Finally, a comparison with other models has been performed to show the effectiveness of the approach.

      • SCISCIESCOPUS

        Gender-dependent Protein Expression in White Adipose Tissues of Lean and Obese Rats Fed a High Fat Diet

        Mukherjee, Rajib,Choi, Jung-Won,Choi, Duk Kwon,Oh, Tae Seok,Liu, Hao,Yun, Jong Won S. Karger AG 2012 CELLULAR PHYSIOLOGY AND BIOCHEMISTRY Vol.29 No.3

        <P>Proper understanding of molecular mechanisms underlying gender dimorphism in obesity for better nutritional recommendation is still in early stages. As white adipose tissues (WAT) is most important tissue in obesity metabolism, comparative proteomic analysis of all three WAT deposits at the same time to yield immensely important protein markers was the primary goal of this study.</P>

      • SCOPUSKCI등재
      • KCI등재

        Magnon bistability in a hybrid cavity–magnon system

        Mukherjee Kousik,Jana Paresh Chandra 한국물리학회 2023 THE JOURNAL OF THE KOREAN PHYSICAL SOCIETY Vol.82 No.4

        We have explored the magnon bistability in cavity–magnon system. The stationary solution of the Heisenberg–Langevin equation is obtained numerically and magnon profle is studied as function of diferent experimentally feasible system parameters. The magnon profle shows an anticlockwise hysteresis loop and the loop area increases with input power. The mean magnon number shows bistable nature. The Kittel mode can transit from one stable state to another stable state near two transition points. The threshold powers of transition and bistable region strongly depend on magnon dissipation rate, photon-magnon coupling strength, and Kerr nonlinear strength. This study confrms that bistable quantum states may supply a platform to describe bistability at macroscopic regime in nonlinear systems. This study may also be used in potential applications in magnetic spintronics.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼