RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Probabilistic-based prediction of lifetime performance of RC bridges subject to maintenance interventions

        Hao Tian,Fangyuan Li 사단법인 한국계산역학회 2016 Computers and Concrete, An International Journal Vol.17 No.4

        In this paper, a probabilistic- and finite element-based approach to evaluate and predict the lifetime performance of reinforced concrete (RC) bridges undergoing various maintenance actions is proposed with the time-variant system reliability being utilized as a performance indicator. Depending on their structural state during the degradation process, the classical maintenance actions for RC bridges are firstly categorized into four types: Preventive type I, Preventive type II, Strengthening and Replacement. Preventive type I is used to delay the onset of steel corrosion, Preventive type II can suppress the corrosion process of reinforcing steel, Strengthening is the application of various maintenance materials to improve the structural performance and Replacement is performed to restore the individual components or overall structure to their original conditions. The quantitative influence of these maintenance types on structural performance is investigated and the respective analysis modules are written and inputted into the computer program. Accordingly, the time-variant system reliability can be calculated by the use of Monte Carlo simulations and the updated the program. Finally, an existing RC continuous bridge located in Shanghai, China, is used as an illustrative example and the lifetime structural performance with and without each of the maintenance types are discussed. It is felt that the proposed approach can be applied to various RC bridges with different structural configurations, construction methods and environmental conditions.

      • Arginine-Rich Manganese Silicate Nanobubbles as a Ferroptosis-Inducing Agent for Tumor-Targeted Theranostics

        Wang, Shuaifei,Li, Fangyuan,Qiao, Ruirui,Hu, Xi,Liao, Hongwei,Chen, Lumin,Wu, Jiahe,Wu, Haibin,Zhao, Meng,Liu, Jianan,Chen, Rui,Ma, Xibo,Kim, Dokyoon,Sun, Jihong,Davis, Thomas P.,Chen, Chunying,Tian, American Chemical Society 2018 ACS NANO Vol.12 No.12

        <P>Ferroptosis, an iron-based cell-death pathway, has recently attracted great attention owing to its effectiveness in killing cancer cells. Previous investigations focused on the development of iron-based nanomaterials to induce ferroptosis in cancer cells by the up-regulation of reactive oxygen species (ROS) generated by the well-known Fenton reaction. Herein, we report a ferroptosis-inducing agent based on arginine-rich manganese silicate nanobubbles (AMSNs) that possess highly efficient glutathione (GSH) depletion ability and thereby induce ferroptosis by the inactivation of glutathione-dependent peroxidases 4 (GPX4). The AMSNs were synthesized <I>via</I> a one-pot reaction with arginine (Arg) as the surface ligand for tumor homing. Subsequently, a significant tumor suppression effect can be achieved by GSH depletion-induced ferroptosis. Moreover, the degradation of AMSNs during the GSH depletion contributed to <I>T</I><SUB>1</SUB>-weighted magnetic resonance imaging (MRI) enhancement as well as on-demand chemotherapeutic drug release for synergistic cancer therapy. We anticipate that the GSH-depletion-induced ferroptosis strategy by using manganese-based nanomaterials would provide insights in designing nanomedicines for tumor-targeted theranostics.</P> [FIG OMISSION]</BR>

      • KCI등재

        Preparation of new visible-light driven nanocomposite photocatalysts, X/NaTaO3/Er3+:YAlO3 (X = Ag, Au and Pt), for photocatalytic conversion of Cr(VI)

        Bowen Li,Yidi Wang,Fangyuan Tian,Guanshu Li,Zhaohong Zhang,Jun Wang,Youtao Song 한국공업화학회 2017 Journal of Industrial and Engineering Chemistry Vol.54 No.-

        In order to expand the light response range of wide band-gap semiconductor photocatalyst (NaTaO3) for effective photocatalytic conversion of Cr(VI), an up-conversion luminescence agent (Er3+:YAlO3) is combined with NaTaO3 and a visible-light driven photocatalyst, NaTaO3/Er3+:YAlO3, is prepared. Moreover, several conduction band co-catalysts (Ag, Au and Pt) are deposited the surface of NaTaO3/Er3+: YAlO3, respectively, to facilitate the transfer rate of photo-generated electrons. X-ray diffractometer (XRD), energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM) analyses are employed to confirm the morphology, microstructure and composition of the prepared photocatalysts. In addition, UV–vis diffuse reflectance spectra are determined to explore the visible-light absorption properties of Er3+:YAlO3, NaTaO3, NaTaO3/Er3+:YAlO3 and X/NaTaO3/Er3+:YAlO3 (X = Ag, Au and Pt). Photoluminescence (PL) spectra are used to estimate the recombination rate of electron–hole pairs. The effects of irradiation time, photosource kind, solution acidity and used times on the photocatalytic capabilities of NaTaO3/Er3+:YAlO3 and X/NaTaO3/Er3+:YAlO3 (X = Ag, Au and Pt) are investigated in detail. The results show that the uses of up-conversion luminescence agent (Er3+:YAlO3) and co-catalysts (Ag, Au and Pt) can promote NaTaO3 to utilize visible-light to carry out the photocatalytic conversion of Cr(VI). Particularly, the prepared Au/NaTaO3/Er3+:YAlO3 nanocomposite with 1.0 wt% Au and 0.3:1.0 molar ratio of Er3+:YAlO3 and NaTaO3 shows the highest photocatalytic activity in conversion of Cr(VI).

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼