RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • 국내 자원 탐사 및 개발의 효율성 증대를 위한 통합 층서적 접근

        유인창,Ryu In-Chang 한국석유지질학회 2003 한국석유지질학회지 Vol.9 No.1

        Prospecting for energy and mineral resources is essential kind of public fundamentals that manage the nation's economy. Most explorations in the past were concentrated in the simple structural traps in relatively shallow depth. Due to their vast exploitation, recent history has shown that the emphasis in explorations has steadily shifted toward the subtle stratigraphic traps in deeper level. Increasing exploration for the subtle stratigraphic traps in deeper level requires precise correlation and assessment of deeply buried strata in the basin. However, the descriptive stratigraphic principles used for evaluation of the simple structural traps are limited to delineate the subtle stratigraphic traps in deeper depth. As this occurs, it is imperative to establish a new stratigrtaphic paradigm that allows a more sophisticated understanding on the basin stratigraphy. This study provides an exemplary application of integrated stratigraphic approach to defining basin stratigraphy of the Middle Ordovician Taebacksan Basin and the Cretaceous South Yellow Sea Basin, Korea. The integrated stratigraphic approach gives much better insight to unravel the stratigraphic response to tectonic evolution of the basins, which can be utilized for enhancing the efficiency of resources exploration and development in the basins. Thus, the integrated stratigraphic approach should be considered as a new stratigraphic norm that can improve the probability of success in any type of resources exploration and development project.

      • KCI등재SCOPUS

        말레이시아 랑카위 지질공원의 고생대 퇴적층: 한반도 고생대 퇴적층과의 대비

        유인창,Ryu, In-Chang 대한자원환경지질학회 2010 자원환경지질 Vol.43 No.4

        The Lankawi archipelago is located in 30 km western offshore near the Thailand-Malaysia border in west coast of the Malay Peninsula and consists of 99 (+5) tropical islands, covering an area of about $479km^2$. Together with biodiversity in flora and fauna, the Lankawi archipelago displays also geodiversity that includes rock diversity, landform diversity, and fossil diversity. These biodiversity and geodiversity have led to the Lankawi islands as a newly emerging hub for ecotourism in Southeast Asia. As a result, the Lankawi islands have been designated the first Global Geopark in Southeast Asia by UNESCO since July 1st, 2007. The geodiversity of Lankawi Geopark today is a result of a very long depositional history under the various sedimentological regimes and paleoenvironments during the Paleozoic, followed by tectonic and magmatic activities until the early Mesozoic, and finally by surface processes that etched to the present beautiful landscape. Paleozoic strata exposed in the Lankawi Geopark are subdivided into four formations that include the Machinchang (Cambrian), Setul (Ordovician to Early Devonian), Singa (Late Devonian to Carboniferous), and Chuping (Permian) formations in ascending order. These strata are younging to the east, but they are truncated by the Kisap Thrust in the eastern part of the islands. Top-to-the-westward transportation of the Kisap Thrust has brought the older Setul Formation (and possibly Machinchang Formation) from the east to overlay the younger Chuping and Singa formations in the central axis of the Lankawi islands. Triassic Gunung Raya Granite intruded into these sedimentary strata, and turned them partially into various types of contact metamorphic rocks that locally contain tin mineral deposits. Since Triassic, not much geologic records are known for the Lankawi islands. Tropical weathering upon rocks of the Lankawi islands might have taken place since the Early Jurassic and continues until the present. This weathering process played a very important role in producing beautiful landscapes of the Lankawi islands today.

      • KCI등재SCOPUS

        충주지역 북서부 옥천변성대의 층서 및 지질구조

        유인창,김태훈,Ryu, In-Chang,Kim, Tae-Hoon 대한자원환경지질학회 2009 자원환경지질 Vol.42 No.1

        The Northwestern Okcheon Metamorphic Belt in the Chungju area consists of the Munjuri Formation, the Daehyangsan Quartzite, the Hyangsanri Dolomite, and the Gyemyeongsan Formation, but the stratigraphy is still controversial. For a stratigraphic study, detailed stratigraphic sections were measured in two locations and mapping was carried out in the study area. The Munjuri Formation and the Daehyangsan Quartzite changed gradually in north and south section, but bedding parallel faults have developed in the boundary between two formations. The Daehyangsan Quartzite and the Hyangsanri Dolomite are conformable. Fault have developed in boundary between the Hyangsanri Dolomite and the Gyemyeongsan Formation. As a result of mapping in the study area, folding was recognized with $41^{\circ}/280^{\circ}$ plunging axis in the north part of the study area. Therefore, the bedding-parallel faults in the boundary might have occurred resulting from a layer parallel slip during the folding as well as the thrust. These results from this study and previous studies indicate that bedding-parallel faults in boundary between the Munjuri Formation and the Daehyangsan Quartzite are caused by a layer parallel slip during the folding. The fault between the Hyangsanri Dolomite and the Gyemyeongsan Formation is considered as a thrust fault, thereby the uppermost Gyemyeongsan Formation is placed under the Munjuri Formation. However the Gyemyeongsan Formation and the Munjuri Formation have similar age and rock composition. Hence, the Gyemyeongsan Formation is considered as an equivalent one with the Munjuri Formation. Therefore, the stratigraphy of Northwestern Okcheon Metamorphic Belt consists of the Gyemyeongsan/ Munjuri formations, the Daehyangsan Quartzite, and the Hyangsanri Dolomite in ascending order.

      • KCI등재SCOPUS

        아나톨리아 반도의 지질구조: 대륙 충돌에 따른 구조적 성장

        유인창,Ryu, In-Chang 대한자원환경지질학회 2012 자원환경지질 Vol.45 No.4

        The Anatolia peninsula consists of several continental fragments that include the Pontide Block in north and the Anatolide-Touride Block in south as well as the Arabian Platform in southeast. These continental blocks were joined together into a single landmass in the late Tertiary. During most of the Phanerozoic these continental blocks were separated by paleo-oceans, such as Paleo-Tethys and Neo-Tethys. The Pontide Block in north show Laurasian affinities, and was only slightly affected by the Alpide orogeny; they preserve evidence for the Variscan and Cimmeride orogenies. The Pontic Block is composed of the Strandja, Istanbul and Sakarya zones that were amalgamated into a single terrane by the mid Cretaceous times. The Anatolide-Tauride Block in south shows Gondwana affinities but was separated from Gondwana in the Triassic and formed an extensive carbonate platform during the Mesozoic. The Anatolide-Tauride Block was intensely deformed and partly metamorphosed during the Alpide orogeny; this leads to the subdivision of the Anatolide-Tauride Block into several zones on the basis of the type and age of metamorphism and deformation. The Arabian Platform in southeast forms the northernmost extension of the Arabian Plate that shows a stratigraphy similar to the Anatolide-Tauride Block with a clastic-carbonate dominated Palaeozoic and a carbonate dominated Mesozoic succession. A new tectonic era started in Anatolia Peninsula in the Oligocene-Miocene after the final amalgamation of these continental blocks and plate. This neotectonic phase is characterized by extension, and strike-slip faulting, continental sedimentation, and widespread calcalkaline magmatism, which played a very important role in producing beautiful landscapes of the Anatolia Peninsula today.

      • KCI등재SCOPUS

        한반도 동남부 백악기 경상분지의 형성과 변형에 관한 질의

        유인창(In-Chang Ryu),최선규(Seon-Gyu Choi),위수민(Soo-Meen Wee) 대한자원환경지질학회 2006 자원환경지질 Vol.39 No.2

        Previously published stratigraphic, sedimentologic, paleontologic, paleomagnetic and geophysical data are reviewed to make an understanding on the tectonic evolution of the Cretaceous Gyeongsang (Kyongsang) basin, southeast Korea. A stratigraphic framework and a tectonic model on the formation and deformation of the Gyeongsang Basin are newly proposed on the basis of integration these data with magmatism and mineralization ages in the basin. A newly proposed stratigraphic framework indicates that strata in the basin can be subdivided into five distinct stratigraphic units that represent pre-rifting, syn-rifting, inversion I, II, and III stages. The Gyeongsang Basin was formed initially as a pre-rifting stage due to north-south extension in the Late Jurassic prior to a syn-rifting stage that resulted from east-west extension during the Early Cretaceous. In the Late Cretaceous, the basin was deformed by three-staged sequential deformation of north-south, northwest-southeast, and east-west compressions. The tectonic history of the basin has been largely controlled by the change of motion of the Izanagi Plate from north to northwest during the Cretaceous. In the early Cretaceous, the Izanagi Plate began to subduct northward beneath the Eurasian Plate and caused the left-lateral strike-slip fault systems in the southern part of the peninsula. The left-lateral wrenching of these fault systems was causally linked to development of pull-apart basins, such as the Gyeongsang Basin in the southeastern part of the peninsula. However, northwestward movement of the Izanagi Plate during the Late Cretaceous probably led to the extensive volcanism as well as sequential deformations in the basin. The stratigraphic and tectonic model, which is newly proposed as a result of this study, may be expected to enhancing the efficiency for exploration and exploitation of useful mineral resources in the basin as well as establishing geologic history in the Cretaceous Gyeongsang Basin. Together with the spatial and temporal correlation of the Cretaceous basins in adjacent areas, this stratigraphic and tectonic model provides a new geologic paradigm to delineate the sophisticated tectonic history of East Asia during the Cretaceous.

      • KCI등재SCOPUS

        정선-삼척 일대 대기층 상부 고품위 석회석의 생성환경

        김창성(Chang Seong Kim),최선규(Seon-Gyu Cho),김규보(Gyu-Bo Kim),강정극(Jeonggeuk Kang),김경배(Kyeong Bae Kim),김학수(Hagsoo Kim),이정상(Jeongsang Lee),유인창(In-Chang Ryu) 대한자원환경지질학회 2017 자원환경지질 Vol.50 No.4

        The carbonate rocks of the Daegi Formation are composed of the limestone at the upper and lower zones, and the dolomite at the middle zone, in which the upper zone has higher CaO content than others. The colors of carbonate rock in the Daegi Formation can be divided into five types; white, light brown, light grey, grey, and dark grey. The white to light grey colored rocks correspond to the high purity limestone with 53.15 ~ 55.64 wt. % CaO, and the light brown colored rocks contain 20.71 ~ 21.67 wt. % MgO. The bleaching of carbonate rocks are not related to CaO composition of the rocks, as light grey rocks tend to be higher in CaO content than those of the white rocks at the lower zone. The pelitic components are also occasionally increased in white limestone than light grey one. Al 2 O 3 is one of the most difficult content to remove during hydrothermal processes, so the interpretation that the limestone is purified together with hydrothemral bleaching, has little merit. The wide range (over 16 ‰) of δ 18 O SMOW , smaller variation (within 2 ‰) of δ 13 C PDB are apparent in both the upper and lower zones, which indicate the Daegi Formation had been affected overall by hydrothermal fluids. The K-Ar isotopic age of hydrothermal alteration in the GMI limestone mine is 85.1 ± 1.7 Ma. Gradual change from grey through light grey to white limestone is accompanied by lower oxygen stable isotope values, which is major evidence that the hydrothermal effect is the main process of the bleaching. Although the Daegi Formation has suffered from hydrothermal activity and increase in whiteness, there is no clear evidence demonstrating the relationship between bleaching and high purity of limestone. The purification of limestone has nothing to do with the hydrothermal activity in this area. Instead, it should be considered that the change of sedimentary environment related to see-level fluctuation which can prevent deposition of pelitic components especially Al 2 O 3 contrbuted to the formation of the high purity limestone in the upper zone of the Daegi Formation. Considering the evidences such as increase in CaO content of limestone by depth, gradual change from calcite to dolomite at the lower zones, and occurring the high purity limestone at the upper zone, the interpretation of sequence stratigraphic aspect to the formation of the high purity Daegi limestone appears to be more suitable than that of hydrothermal alteration origin.

      • KCI등재SCOPUS

        예천전단대 북동부 명호지역 엽리상 화강암류와 압쇄 편마암류에 대한 지구화학 및 Nd-Sr 동위원소 연구

        김성원,이창윤,유인창,Kim, Sung-Won,Lee, Chang-Yun,Ryu, In-Chang 대한자원환경지질학회 2008 자원환경지질 Vol.41 No.3

        The NE-trending Honam shear zone is a broad, dextral strike-slip fault zone between the southern margin of the Okcheon Belt and the Precambrian Yeongnam Massif in South Korea and is parallel to the trend of Sinian deformation that is conspicuous in Far East Asia. In this paper, we report geochemical and isotopic(Sr and Nd) data of mylonitic quartz-muscovite Precambrian gneisses and surrounding foliated hornblende-biotite granitoids near the Myeongho area in the Yecheon Shear Zone, a representative segment of the Honam Shear Zone. Foliated hornblende-biotite granitoids commonly plot in the granodiorite field($SiO_2=61.9-67.1\;wt%$ and $Na_2O+K_2O=5.21-6.99\;wt%$) on $SiO_2$ vs. $Na_2O+K_2O$ discrimination diagram, whereas quartz-muscovite Precambrian orthogneisses plot in the granite field. The foliated hornblende-biotite granitoids are mostly calcic and calc-alkalic and are dominantly magnesian in a modified alkali-lime index(MALI) and Fe# [$=FeO_{total}(FeO_{total}+MgO)$] versus $SiO_2$ diagrams, which correspond with geochemical characteristics of Cordilleran Mesozoic batholiths. The foliated hornblende-biotite granitoids have molar ratios of $Al_2O_3/(CaO+Na_2O+K_2O)$ ranging from 0.89 to 1.10 and are metaluminous to weakly peraluminous, indicating I type. In contrast, Paleoproterozoic orthogneisses have peraluminous compositions, with molar ratios of $Al_2O_3/(CaO+Na_2O+K_2O)$ ranging from 1.11 to 1.22. On trace element spider diagrams normalized to the primitive mantle, the large ion lithophile element(LILE) enrichments(Rb, Ba, Th and U) and negative Ta-Nb-P-Ti anomalies of foliated hornblende-biotite granitoids and mylonitized quartz-muscovite gneisses in the Yecheon Shear Zone are features common to subduction-related granitoids and are also found in granitoids from a crustal source derived from the arc crust of active continental margin. ${\varepsilon}_{Nd}(T)$ and initial Sr-ratio ratios of foliated hornblende-biotite granitoids with suggest the involvement of upper crust-derived melts in granitoid petrogenesis. Foliated hornblende-biotite granitoids in the study area, together with the Yeongju Batholith, show not changing contents of specific elements(Ti, P, Zr, V and Y) from shear zone to the area near the shear zone. These results suggest that no volume changes and geochemical alterations in fluid-rich foliated hornblende-biotite granitoids may occur during deformation, which mass transfer by fluid flow into the shear zone is equal to the mass transfer out of the shear zone.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼