http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
김준용,이춘구,권태형,박건환,이중용 한국농업기계학회 2013 바이오시스템공학 Vol.38 No.1
Purpose: The objective of this study is to develop a data middleware for u-IT convergence in agricultural environment monitoring, which can support non-standard data interfaces and solve the compatibility problems of heterogenous sensor networks. Methods: Six factors with three different interfaces were chosen as target data among the environmental monitoring factors for crop cultivation. PostgresSQL and PostGIS were used for database and the data middleware was implemented by Python programming language. Based on hierarchical model design and key-value type table design, the data middleware was developed. For evaluation, 2,000 records of each data access interface were prepared. Results: Their execution times of File I/O interface, SQL interface and HTTP interface were 0.00951 s/record, 0.01967 s/record and 0.0401s/record respectively. And there was no data loss. Conclusions: The data middleware integrated three heterogenous sensor networks with different data access interfaces.
The proteomic landscape shows oncologic relevance in cystitis glandularis
김준용,한도현,김혜윤,정민선,유한석 대한병리학회 2023 Journal of Pathology and Translational Medicine Vol.57 No.1
Background: The relationship between cystitis glandularis (CG) and bladder malignancy remains unclear. Methods: We identified the oncologic significance of CG at the molecular level using liquid chromatography-tandem mass spectrometry-based proteomic analysis of 10 CG, 12 urothelial carcinoma (UC), and nine normal urothelium (NU) specimens. Differentially expressed proteins (DEPs) were identified based on an analysis of variance false discovery rate < 0.05, and their functional enrichment was analyzed using a network model, Gene Set Enrichment Analysis, and Gene Ontology annotation. Results: We identified 9,890 proteins across all samples and 1,139 DEPs among the three entities. A substantial number of DEPs overlapped in CG/NU, distinct from UC. Interestingly, we found that a subset of DEP clusters (n = 53, 5%) was differentially expressed in NU but similarly between CG and UC. This “UC-like signature” was enriched for reactive oxygen species (ROS) and energy metabolism, growth and DNA repair, transport, motility, epithelial-mesenchymal transition, and cell survival. Using the top 10 shortlisted DEPs, including SOD2, PRKCD, CYCS, and HCLS1, we identified functional elements related to ROS metabolism, development, and transport using network analysis. The abundance of these four molecules in UC/CG than in NU was consistent with the oncologic functions in CG. Conclusions: Using a proteomic approach, we identified a predominantly non-neoplastic landscape of CG, which was closer to NU than to UC. We also confirmed a small subset of common DEPs in UC and CG, suggesting that altered ROS metabolism might imply potential cancerous risks in CG.
김준용,김상철,이재수 한국농업기계학회 2018 바이오시스템공학 Vol.43 No.1
Purpose: A modern greenhouse consists of various Information and Communications Technology (ICT) components e.g., sensor nodes, actuator nodes, gateways, controllers, and operating softwarethat communicate with each other. The interoperability between these components is an essential characteristic for any greenhouse control system. A greenhouse control system could not work unless the components communicate via common interfaces. The TTAK.KO-06.0288 is an interface standard consisting of four parts. Notably, TTAK.KO-06.0288-Part3, which describes the interface between a greenhouse operating system (GOS) and a greenhouse control gateway (GCG), is the core standard of TTAK.KO-06.0288. The objectives of this study were to analyze the TTAK.KO-06.0288-Part3 standard, to suggest alternative solutions for identified issues, and to develop a library as a proof of the alternative solutions. Methods: The “data field” was analyzed using a comparative analysis method, since it is a data transmission unit of TTAK.KO-06.0288-Part3. It was compared with other parts of TTAK.KO-06.0288 in terms of definition, format, size, and possible values. Although TTAK.KO-06.0288-Part1 and TTAK.KO-06.0288-Part2 do not use a “data field,” they have a similar data structure. That structure was compared with the “data field” of TTAK.KO-06.0288-Part3. Results: Twenty-one issues were identified across four categories: inter-standard issues, intra-standard issues, operational issues, and misprint issues. Since some of the issues can raise interoperability problems, 16 alternative solutions were suggested. In order to prove the alternative solutions, an open-source communication library called libtp3 was developed. The library passed 14 unit tests and was adapted to two research. Conclusions: Although TTAK.KO-06.0288-Part3 is an interface standard for communication between a GOS and a GCG, it might not communicate between different implementations because of the identified issues in the standard. These issues could be solved by the alternative solutions, which could be used to revise TTAK.KO-06.0288. In addition, a relevant organization should develop a program for compatibility testing and should pursue test products for smart greenhouses.